

- Light Crude oil ++ US \$70 per barrel
- Import ++ 322,000 MT of diesel oil and 277,000 MT of fuel oil annually.
- Reduce dependence of Petroleum Products and thus trade deficit
- renewable energy sources in line with KYOTO protocol
- Increasing concern over global warming as a result of Greenhouse gases emissions.
- Generates employment opportunities for rural masses thereby providing them livelihood support. Plantation of oil yielding plants such as Jatropha Curcas for bio-diesel will result in greening of waste and fallow lands.
- Eco-restoration, drought proofing and environmental security.

	Jatropha Curcas	Pongamia Pinnata		
Naturity -fruiting	3-4 years	7 years		
Plants/hectare	2500	156 – 200		
Seed/tree	2 Kg avg (1 – 4 Kg)	15 Kg avg (10–20 Kg)		
Seed yield /hectare	5000 Kg	3500 Kg		
Dil yield/hectare	1750 Kg (30-40%)	1075 Kg (25-30%)		
ree height	2 Metre	10 Metre		
ruit Shell	Too thin (easy de-shelling)	Too thick (de-shelling difficult)		
Physico-chemical characteristics :				
Sp. Gravity (15 deg C)	0.918 - 0.923	0.925 - 0.940		
Flash Point	191 deg C	134 deg C		
Cetane Index	57 - 62	56.2		
Sulphur %	0.014	0.02		
FA %	5.8 – 7.5	8.3		

	meinyiesier			
Property	Palm oil	Soybean	Rapeseed	Jatropha curcas
Specific gravity ASTM D1298	0.87@23.6ºC	0.87	0.88	0.81
Sulphur content (%wt) IP 242	<0.04			
Viscosity mPa-s at 20oC		3.6	3.6	2.6-4.1
Viscosity at 40°C (cst), ASTM D445	4.5			
Pour point (°C) ASTM D97	16.0	-3	-15	-23
Cetane Index ASTM D976	50	52	62	40-55
Gross heat of combustion (kJ/kg) ASTM D93	40.135	32	37	35-37
Flash point (°C) ASTM D93	174	-	179	74
Conradson carbon residue (%wt) ASTM D189	0.02			
Carbon (% wt)		78	81	84-87
Hydrogen (%wt)		11	12	13-16
Oxygen		11	7	0

Emissions	B100	B20
Total Unburned Hydrocarbons	-93%	-30%
Carbon Monoxide	-50%	-20%
Particulate Matter	-30%	-22%
NOx	+13%	+2%
Sulphates	-100%	-20%
Polycyclic Aromatic Hydrocarbons (PAH)	-80%	-13%
NPAH (Nitrated PAHs)	-90%	-50%
Ozone Potential of Speciated HC	-50%	-10%
Carbon Dioxide (LCA)	-8)%
Sulphur Dioxide (LCA)	-100%	

Biodiesel Production capacity	Equipment cost, US \$
800 LPD	15,320
1200LPD	18450
1600 LPD	21,500
2000 LPD	24,200
50,000 gallons per year	55,000
300,000 gallons per year	170,000
1000 LPH	1,360,000
3000 LPH	2,900,000

The relative cost distribution for biodiesel production is as follows: 1% Labour, 3% depreciation, 1% Overhead and Maintenance, 1% Energy, 10% Catalyst and 84% feedstock.

